Inverting of generalized Riemann - Liouville operator by means of integral Laplace transform

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integral Inequalities for h(x)-Riemann-Liouville Fractional Integrals

In this article, we obtain generalizations for Grüss type integral inequality by using h(x)-Riemann-Liouville fractional integral.

متن کامل

Extended Riemann Integral of Functions of Real Variable and One-sided Laplace Transform

In this article, we defined a variety of extended Riemann in-tegrals and proved that such integration is linear. Furthermore, we defined the one-sided Laplace transform and proved the linearity of that operator. the terminology and notation for this paper. In this paper a, b, r are elements of R. We now state three propositions: (1) For all real numbers a, b, g 1 , M such that a < b and 0 < g 1...

متن کامل

Inverse Laplace transform method for multiple solutions of the fractional Sturm-Liouville problems

In this paper, inverse Laplace transform method is applied to analytical solution of the fractional Sturm-Liouville problems. The method introduces a powerful tool for solving the eigenvalues of the fractional Sturm-Liouville problems. The results  how that the simplicity and efficiency of this method.

متن کامل

Some new Hardy-type inequalities for Riemann-Liouville fractional q-integral operator

*Correspondence: [email protected] 1Luleå University of Technology, Luleå, 971 87, Sweden 2Narvik University College, P.O. Box 385, Narvik, 8505, Norway Full list of author information is available at the end of the article Abstract We consider the q-analog of the Riemann-Liouville fractional q-integral operator of order n ∈ N. Some new Hardy-type inequalities for this operator are proved and dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ufa Mathematical Journal

سال: 2016

ISSN: 2074-1863,2074-1871

DOI: 10.13108/2016-8-3-41